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Abstract
Theoretical positron lifetime values have been calculated systematically for
most of the elements of the periodic table. Self-consistent and non-self-
consistent schemes have been used for the calculation of the electronic structure
in the solid, as well as different parametrizations for the positron enhancement
factor and correlation energy. The results obtained have been studied and
compared with experimental data, confirming the theoretical trends. As is
known, positron lifetimes in bulk show a periodic behaviour with atomic
number. These calculations also confirm that monovacancy lifetimes follow
the same behaviour. The effects of enhancement factors used in calculations
have been commented upon. Finally, we have analysed the effects that f and d
electrons have on positron lifetimes.

1. Introduction

The classification of the elements has been one of the major achievements in the history of
science. This classification was originally derived from empirical experimental results, because
the concept of atomic number was unknown to Mendeleev [1]. Since then, the resulting periodic
order has been most strikingly reflected in a quantitative manner by most of the physical
properties of the elements. A proof of this fact is that about 700 forms of the periodic table
have been proposed (classified into 146 different types or subtypes) [2, 3].

Positron-annihilation spectroscopy (PAS) is a powerful and versatile tool for the study of
the microscopic structure of materials [4–7]. Using PAS, detailed experimental information
about electronic and atomic structure from the region of the material sampled by the
positrons is obtained. PAS measurements for material characterization generally use
three techniques: positron lifetime spectroscopy, Doppler broadening analysis and angular
correlation measurements. Positron lifetime measurements give information about electron
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density at the annihilation place. On the other hand, Doppler broadening and angular
correlation measurements give information about electron momentum distribution. So, the
electronic configuration of the material studied is reflected in the positron annihilation
parameters. For example, in Doppler broadening experiments, the high-momentum part is
used to distinguish different non-adjacent elements in the periodic table [8, 9].

As the annihilation properties of the positron are related to the electronic structure, they
also show a periodic behaviour. In 1963, Rodda and Stewart [10] studied the behaviour of
the experimental positron lifetime of rare-earth metals and compared it with the radius of the
sphere whose volume is equal to the volume per conduction electron, r ′

s (correcting the value by
excluding the volume of the ion). However, MacKenzie et al set a stronger relation in 1975 [11].
They collected experimental bulk lifetimes of many elements and reported their ‘systematic
dependence on atomic number’. Also that year, Brandt et al [12] calculated the lifetime of some
elements. They explained that the periodic behaviour of positron lifetime ‘is linked prima facie
to the virtual excitation of coupled valence-electron-plasma and single-particle modes in the
collective response of the metal electrons to screen the positron charge’. Later, in 1976, Welch
and Lynn studied the variations of the experimental mean lifetime versus the atomic number,
and stated that it ‘is strikingly similar to that of the atomic volume’ [13]. In 1991 Puska found
that the trends observed in bulk lifetimes along the 3d, 4d and 5d rows of the periodic table are
very similar to the behaviour of the Wigner–Seitz radii [14]. However, this periodicity is not
only reflected in the positron lifetime. Doppler broadening experiments [9, 15] and positron
affinity of elemental metals [16] also show periodic behaviour.

In this work, a systematic density functional theory (DFT) calculation of positron lifetimes
has been performed for bulk and monovacancies of most of the elements of the periodic
table. The main factors influencing bulk and vacancy positron lifetimes for elemental solids
have been well understood for more than 30 years. So our main aim is to show the
periodic trends appearing in bulk and monovacancy positron lifetimes. The effort made to
calculate and compile systematically the annihilation parameters is important to go deeply
into the study of the calculation methods, improving the theoretical background required for
a good interpretation of the experimental data. The organization of this paper is as follows:
the computational method is explained in section 2; section 3 contains the results of the
calculations, the correlation between lifetimes, and the periodic properties of the elements,
information about the enhancement factors used in the calculations and the analysis of the
effects of f and d electrons; and finally, the conclusions of the work are presented in section 4.

2. Computational method

The calculation of positron properties in solids can be traced back to the late 1960s and early
1970s (see for instance [17–20]) and since then numerical simulations have become a well
developed technique (see the reviews [4, 6] and the recently published paper [21]). Positron
states must be calculated self-consistently within the two-component DFT for positron and
electron densities. However, the conventional way to treat positron states in solids simplifies
the two-component DFT. Within the conventional scheme, an unperturbed electronic ground
state for the system is constructed. Then, the positron distribution is calculated by assuming
the electron density remains rigid, and by accounting for the electron–positron correlation in
terms of a correlation (screening) potential dependent on the electron density. In the case
of delocalized positron states, the positron density is vanishingly small at every point of the
lattice, and it does not influence the electronic structure. As a result, for bulk positron states the
conventional scheme runs very well. In the case of a positron localized at a lattice defect, the
situation is more complicated because the positron attracts electrons, and the average electron
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density increases near the defect (positron). However, in most applications for positron states
at defects, the conventional scheme works very well too. Indeed, the two-component DFT
calculations performed by Nieminen et al [22] and Boronski and Nieminen [23] support the
use of the conventional scheme, since the annihilation rates are very close to those obtained
with the conventional scheme. This similarity of results between the conventional scheme and
the two-component DFT calculation is due to the fact that the larger short-range enhancement
compensates the smaller electron density at the positron.

Therefore, in the present work we have used the conventional method of calculation.
Firstly, we have solved the electron density of the perfect or defected solid, then we have
calculated the positron wavefunction, and finally, we have determined the positron annihilation
rate. We have used a supercell method to compute the electronic densities following (a) the
atomic superposition approximation (AT-SUP) developed by Puska and Nieminen [24] and (b)
the tight binding version of the linear muffin-tin orbital method within the atomic-spheres
approximation (LMTO-ASA) [25, 26].

(a) AT-SUP method
The AT-SUP approximation of Puska and Nieminen is a simple method that makes use

of non-self-consistent unrelaxed electronic densities. It gives satisfactory values of positron
lifetimes in metals and semiconductors [24, 27–29]. The good agreement between the
experimental and theoretical lifetimes is mainly due to the fact that the positron annihilation
rate is obtained as an integral over the product of positron and electron densities. The positron
density relaxes following the electron charge transfer, keeping the value of the positron–
electron overlap integral constant. For this reason, positron lifetime calculations are not too
sensitive to self-consistency.

In the AT-SUP approximation the electron density n−(r) of the solid is constructed by
superimposing individual atomic charge densities:

n−(r) =
∑

i

nat
−(|r − Ri |) (1)

where nat− is the free-atom electron density and Ri runs over the occupied atomic sites. For the
crystalline Coulomb potential Vc(r) the same procedure has been used:

Vc(r) =
∑

i

Vat(|r − Ri |) (2)

where Vat is the atomic Coulomb potential due to the electron density and the nucleus. Densities
and potentials of the atomic ground-state electronic configuration are obtained self-consistently
within the DFT. The potential felt by the positron in the solid, V+(r), is obtained by adding to
the Coulomb potential, Vc(r), the positron–electron correlation energy, Vcorr(n (r)):

V+(r) = Vc(r) + Vcorr(n−(r)) (3)

where n−(r) is the electron density. The space is discretized in a three-dimensional mesh
that forms an orthorhombic Bravais lattice, where the potential is projected. The discretized
Schrödinger equation is solved iteratively at the mesh points by using a numerical relaxation
method [30] to obtain the positron wavefunction and its energy eigenvalue. Depending on the
structure of the element, the density of the cubic mesh varies between one and three points per
atomic unit in each direction. We have checked in some elements that this difference in the
density of the mesh does not affect the lifetimes.

(b) LMTO-ASA method
LMTO-ASA is a method that makes use of self-consistent electronic densities. It gives

satisfactory values for positron lifetimes in metals and semiconductors [14, 28, 29]. In LMTO-
ASA calculations the electron density and Coulomb potential are determined self-consistently
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within spheres centred around nuclei and interstitial sites (when the atomic packing is not
dense) of the structure. The spheres fill the whole lattice space and the atomic ones have
equal radii. The potential and the charge densities are assumed to be spherically symmetric
inside each sphere. The potential felt by a positron is constructed according to equation (3),
and the positron state is solved by using the same methods as used for electron states in
the LMTO-ASA. From now on, all the references made to this method will be labelled as
LMTO.

The f electrons are a strongly correlated system. However, we have treated the 4f electrons
of the lanthanides and the 5f electrons of the actinides as band electrons, and the 4f electrons
of the actinides as core-like states.

Once we have calculated the electron and positron densities, the positron annihilation
rate, the inverse of the positron lifetime, is obtained from the overlap of positron and electron
densities as:

λ = πr 2
o c

∫
drn+(r)n−(r)γ (r) (4)

where ro is the classical electron radius, c is the speed of light in a vacuum, n+(r) is the positron
density and γ (r) is the so-called enhancement factor. Vcorr(r) and γ (r) have been taken into
account by using two different schemes:

1. Within the local density approximation. For the correlation energy the interpolation
formula by Boroński and Nieminen [23] based on the results by Arponen and Pajanne [31]
is used; and for the enhancement factor the widely used form [23] based on Lantto’s [32]
hypernetted chain approximation calculations:

γBN(rs) = 1 + 1.23rs + 0.8295r 3/2
s − 1.26r 2

s + 0.3286r 5/2
s + 1

6

(
1 − 1

ε∞

)
r 3

s , (5)

where ε∞ is the high-frequency dielectric constant of the material and rs is the radius of a
sphere whose volume is equal to the volume per conduction electron. This last parameter is
related to the electron density, n (r), by:

rs =
(

3

4πn−

)1/3

. (6)

Results obtained with this scheme are labelled BN.
2. Within the generalized gradient approximation (GGA). The correlation energy and the

enhancement factor due to Barbiellini et al [28, 33] are used, both based on the results by
Arponen and Pajanne [31]. In this scheme the enhancement factor is given by:

γGGA = 1 + (γLDA − 1)e−αε, (7)

where γLDA is:

γLDA(rs) = 1 + 1.23rs − 0.0742r 2
s + 1

6r 3
s , (8)

α is an adjustable parameter and ε is obtained from this expression:

ε = |∇n−|2
(n−qTF)2

= |∇ ln n−|2
q2

TF

, (9)

with (qTF)
−1 the local Thomas–Fermi screening length. ε is a parameter proportional

to the lowest-order gradient correction to the correlation hole density in the local density
approximation. The results obtained with these two schemes will be labelled LDA and GGA.

The α parameter is determined so that the calculated and experimental lifetimes agree
as well as possible for a large number of different types of solid. Barbiellini et al [28, 33]
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found that α = 0.22 value gives lifetimes in good agreement with experiments for different
types of electronic environment, including simple metals (Na and K of the 1st group),
transition metals (Fe, 8th group; Ni, 10th group; Cu, 11th group; Al, 13th group), group-
IV semiconductors (Si and Ge) and III–V and II–V compound semiconductors (GaAs, InP
and CdTe). α = 0 gives the local density approximation limit of this enhancement factor,
that is to say γLDA. As was pointed out before [28, 34], the lifetimes calculated by using
γLDA are always much shorter than those calculated with γBN and γGGA, and the experimental
ones.

The positron lifetime calculations have been performed for most of the elements of the
periodic table. The unit cell of the crystalline structure has been used as the supercell for
bulk calculations. In vacancy calculations one atom is removed from the supercell to produce
a vacancy. If the supercell is large enough, the vacancy does not interact with its periodic
image and the system describes an isolated vacancy quite well. However, in practice, the size
of the supercell cannot be made arbitrarily large. The size of the supercells in the AT-SUP
method has been increased until convergence. The maximum number of atoms per supercell
used to reach convergence was: 511 atoms (orthorhombic structure), 511 atoms (diamond
structure), 499 atoms (tetragonal structure), 463 atoms (cubic structure), 255 atoms (FCC
structure), 249 atoms (hexagonal structure), 383 atoms (rhombohedral structure) and 127 atoms
(BCC structure). Self-consistent calculations within the LMTO method for monovacancies are
much more computationally demanding than the ones performed with the AT-SUP method,
particularly for large supercells. Moreover, for large supercells, calculations performed
employing the � point for the positron density or the lowest lying band in the Brillouin zone
give identical values for the monovacancy positron lifetime [29]. Therefore, for calculations
within the LMTO method for monovacancies we have integrated over the lowest positron band
in the Brillouin zone, because it gives faster convergence in the supercell approach [29]. The
maximum number of atoms used within the LMTO was: 127 atoms (hexagonal structure),
124 atoms (BCC structure), 107 atoms (rhombohedral structure), 63 atoms (FCC structure),
53 atoms (tetragonal structure), 53 atoms (diamond structure), 31 atoms (orthorhombic
structure) and 28 atoms (cubic structure).

For the monovacancy supercells no relaxation in the atomic positions has been performed;
this means that the ions neighbouring the vacancy are not allowed to relax from their ideal
lattice positions. It is known that an accurate calculation of the monovacancy lifetime
needs atomic relaxation. In insulators and semiconductors the atomic relaxation may be
important, and can change with the charge state of the defect and with the localization of the
positron [35, 36], but it is not large in metals [37–39]. However, the study of the effects of these
relaxations goes beyond the aims of this work.

Some elements get a different crystal structure for different conditions of pressure and
temperature. When an element has more than one possible structure, we have chosen the
most common one in normal conditions. The rare gases are not solid in normal conditions,
so we have studied the solid state at very low temperature. The crystal structure and the lattice
parameters used in the calculations are shown in table 1, and have been taken from experimental
data [40–42].

In BN calculations, the semi-empirical correction based on high-frequency dielectric
constant of equation (5) [43] is used for the elements of table 2, which shows experimental
values of dielectric constants [41, 42, 44]. No values have been found for the dielectric
constants of several insulators (As, Cl, Br and I) in the literature. So these insulators and
rare gases have been treated as metals, using ε∞ = ∞. In the rare gases a special treatment
is needed; however, it goes beyond the aim of this work. In LDA and GGA frameworks, this
correction is not necessary.
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Table 1. Structural data for the elements. The crystal structures of the elements are: cubic (CUB), body-centred cubic (BCC), face-centred
cubic (FCC), cubic diamond (DIAM), rhombohedral (RHOMB), tetragonal (TETRA), orthorhombic (ORTHOR), hexagonal close-packed
(HEX) and double hexagonal close-packed (HEX/abac). (*) Manganese has a cubic complex structure (see Donohue [40]).
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Table 2. High-frequency dielectric constant of some elements used in calculations.

Element ε∞

C 5.62
Si 11.9
P 6.1
Ge 16.0
Se 13.98
Sn 23.8
Te 29.5

3. Results and discussion

3.1. Bulk and monovacancy lifetimes

The positron lifetime values calculated for the bulk state are given in tables 3 and 4. The
values in table 3 correspond to calculations made within the AT-SUP method with BN and
GGA approximations. The results obtained within the LMTO method with BN and GGA
approximations are given in table 4.

On the other hand, the results of monovacancy lifetime calculations (BN and GGA) are
shown in tables 5 and 6 for AT-SUP and LMTO methods, respectively. Table 6 does not
present monovacancy lifetimes of actinides due to convergence problems with the LMTO
code. The bulk and monovacancy lifetime results are in agreement with previously reported
values [28, 33].

Table 7 shows the AT-SUP results of bulk and monovacancy lifetimes obtained within the
LDA framework. As mentioned before, these values are shorter than BN and GGA ones, but
show the same trend.

Finally, experimental positron lifetime values in bulk and monovacancy states (see [45]
and the references therein) are given in table 8 for comparison with theoretical ones. Even
though the first positron lifetime measurements were made more than 50 years ago [46–49],
nowadays the experimental data do not reach to all elements of the periodic table. Moreover,
there are many more data for bulk than for monovacancy lifetimes. For some elements there
are no experimental data, but for others there are many experimental data and the scattering
among them is large. Therefore, the selection of the measurements is a difficult affair, and
we have fixed some conditions to select data with a minimum of quality and coherence. The
chosen conditions might not be the best ones; however, a selection has to be made. First
of all, we have considered data from 1975 up to now. We have chosen this requirement
because the POSITRONFIT program was developed around 1972 [50], and improved in
1974 [51], becoming a common, or even standard, tool for use by positron scientists to analyse
experimental spectra. Furthermore, we have chosen a maximum of 320 ps for the full width
at half maximum of the resolution function. Finally, we have taken as the limit value for the
error of the measurement ±5 ps in bulk lifetimes, and ±10 ps in monovacancy lifetimes. In
cases where the literature gives different lifetime values following the previous requirements,
the average value has been calculated. It is expected that the systematic errors from various
experiments would be cancelled. In order to fill the extremes of the periodic table, we have
taken into account two experimental works on alkalines (Li, Na, K, Rb, Cs) [52] and ideal
gases (Ar, Xe) [53] that do not fit the previous requirements. However, these works have been
used in previous reviews.
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Table 3. Calculated positron bulk lifetimes using the AT-SUP method with BN and GGA parametrizations.
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Table 4. Calculated positron bulk lifetimes using the LMTO method with BN and GGA parametrizations.
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Table 5. Calculated positron monovacancy lifetimes using the AT-SUP method with BN and GGA parametrizations.
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Table 6. Calculated positron monovacancy lifetimes using the LMTO method with BN and GGA parametrizations.
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Table 7. Calculated positron lifetimes using the AT-SUP method with LDA parametrization for bulk and monovacancy states.
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Table 8. Experimental positron lifetimes for bulk and monovacancy states.
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Figure 1. Atomic volume (filled circles) and positron lifetimes plotted against atomic number.
Positron lifetimes are calculated in bulk (circles) and monovacancy (squares) states within the AT-
SUP method using the BN approximation.

3.2. Positron lifetime among periodic properties

In order to present the expected periodic behaviour of the positron lifetime, figure 1 shows
calculated bulk (circles) and monovacancy (squares) positron lifetimes versus atomic number.
Plotted lifetimes have been calculated within the AT-SUP method using the BN approximation
for the enhancement factor and correlation energy. The experimental values of table 8 have not
been plotted, but follow the same theoretical trends.

The atomic volume of the elements [54] has been plotted against atomic number in figure 1,
too. The atomic volume (defined as the product of the atomic weight and the specific volume
of an element at normal conditions) is a good magnitude for measuring the size of one single
atom in its own structure and is defined for all the elements in the same way. This is one of the
main reasons why the atomic volume has been chosen, even though different magnitudes such
as metallic radius, ionic radius, covalent radius etc. have been defined for the quantification of
the atomic size. However, from these last magnitudes it is not possible to obtain an accurate
value for the volume. Besides, most radii types are defined only for some elements and not
for all. The atomic volume, as other properties of the elements, has a strong relation with the
arrangement of the electrons in atomic shells [55–59]. For this reason, the atomic volume is a
periodic function of the atomic number, as was first formulated by Lothar Meyer in 1870 (with
reference to atomic weight, not to atomic number) [60].

The similarity between the atomic volume curve and the two positron lifetime curves on
figure 1 is great. Different factors affect positron lifetimes, like many-body enhancements,
the region occupied by the positron (which in the bulk is less than the atomic volume), and
the electrons available for annihilation in that region. However, the three graphics show the
same periodic behaviour, also reproducing many small details. Although the lifetime has
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been compared with other periodic properties like the rs parameter, Wigner–Seitz radii etc
the relation with the atomic volume seems to be more fundamental. This work confirms
previous statements [13], but also proves that the monovacancy lifetimes exhibit the same
periodic behaviour. Despite the localization of the wavefunction, the positron lifetime in bulk
(delocalized state) and at a monovacancy (localized state) is still related to the volume of a
single atom, and this is independent of the method of calculation used in this work. When an
atom is removed from a perfect crystal structure, the remaining volume is mainly related to
that atom. But on the removal of more than one atom the remaining volume is more structure
dependent [34].

The lifetimes of some elements (As, Br, Kr, I and Xe) do not follow the trends of atomic
volume (see figure 1). This special behaviour will be analysed in section 3.3.

The periodic behaviour of the positron lifetime found for the AT-SUP method within
the BN approximation is also found using the GGA and LDA frameworks, as well as in the
calculations performed with the LMTO code using the BN and GGA approximations.

3.3. Enhancement factors

The enhancement factor is of crucial importance in positron lifetime calculations ([61–63] and
references therein). For this reason, it is necessary to study the behaviour of enhancement
factors used in these calculations.

As has been pointed before, in figure 1 the lifetimes of some elements (As, Br, Kr, I and
Xe) do not follow the periodic trends as could be predicted from the atomic volume. In the case
of insulators, a model based on atomic polarizabilities, estimated from the Clausius–Mossotti
relation, has been used too [43], where the dielectric constant of the solid is also needed. For
the rare gases a special framework is needed. However, in these calculations, some insulators
(As, Cl, Br and I) and all the rare gases (Ne, Ar, Kr and Xe) have been considered as metals
(ε∞ = ∞). So the real lifetimes of the BN approximation for these eight elements are really
longer and closer to GGA values than the calculated ones (see tables 3–6).

Boroński–Nieminen enhancement, γBN (equation (5)), is based on the many-body
calculations performed by Lantto [32]. Stachowiak and Boroński reported that the calculations
of Lantto start from a physically oversimplified trial function [64]. Fraser, in her PhD thesis,
failed to reproduce Lantto’s results using a quantum Monte Carlo approach [65]. However,
Boroński reported that the lifetimes calculated based on Fraser’s results are quite inaccurate,
becoming even unreasonable for rs > 4 [66].

The Boroński–Nieminen parametrization, used in this work, agrees very well with the
positron enhancements calculated by Arponen and Pajanne [67], Gondzik and Stachowiak [68]
and Rubaszek and Stachowiak [69] for rs � 8 (see Fraser’s thesis [65], page 143). Indeed,
Stachowiak and Boroński [64] pointed out that γBN is the best formula to fit the experimental
lifetimes in metals. In bulk metals, rs usually runs from 2 to 6 (in Cs it gets the maximum value,
5.6). However, the enhancement factor of the Boroński–Nieminen approach has two important
problems at low densities (see figure 1 in [28]):

(a) The scaled proton limit rule [70] is violated for rs � 9. This is the upper bound for all the
enhancement factors.

(b) For rs greater than 6 the lifetimes obtained with γBN do not increase monotonically with
rs. For this reason, the lifetimes cannot reach the 500 ps limit.

These two problems appear when the electronic density is low (semiconductors, insulators,
rare gases, vacancies, voids, etc). In the case of semiconductors and insulators, the problem
has been tackled using semi-empirical corrections introduced by Puska et al [43]. Using this
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Figure 2. Bulk (circles) and monovacancy (squares) positron lifetimes of elements from La to Hg
(6th row of the periodic table) versus atomic number. Lifetimes have been calculated within the
LMTO using BN (open symbols) and GGA (filled symbols) approximations.

correction, calculated lifetimes in the BN approximation fit well the experimental ones, even
when the densities are low.

In the case of γLDA (equation (8)), the enhancement factor has the same form as that used
by Stachowiak and Lach [71]. γLDA has been obtained fitting the Arponen–Pajanne data points
only up to rs = 5 [28]. In the Arponen–Pajanne data, the Friedel sum rule is violated for rs = 6
and 8, and the scaled proton limit value is crossed at rs = 8 [31]. As γGGA (equation (7))
is obtained from γLDA, neither the LDA nor the GGA enhancements are very reliable for low
electron densities, like BN enhancement. Calculations made in systems of low electron density
using the GGA approximation with the universal value α = 0.22 do not give reasonable
lifetimes [63, 72]. For example, in order to get lifetime values near the experimental ones
for C60, it is necessary to fit the α parameter to a ‘suitable’ value [72].

As a result of all of these problems in the enhancements, we have to be very careful with
all of the calculated lifetimes near to or greater than 400 ps. So more theoretical work is needed
for low density systems.

3.4. f and d electrons

Figure 2 represents the behaviour of positron lifetimes for bulk (circles) and monovacancy
(squares) in elements from 57La to 80Hg of the 6th row of the periodic table. As f and d shells get
filled between 57La and 80Hg, the positron lifetimes of these elements can be used for studying
the effects of f and d electrons on positron annihilation properties. The represented lifetimes are
those obtained within the LMTO method using BN (empty symbols) and GGA (full symbols)
approximations (see tables 4 and 6). Experimental lifetimes from table 8 have been plotted as a
reference. As is known, the GGA calculation method uses the gradient of electronic density. So,
for an accurate calculation, it is necessary to use a self-consistent electronic density, enabling
charge-transfer in the system. Therefore, in order to make a better comparison between BN and
GGA calculation methods, we have represented LMTO results.

First of all, we must remark that figure 2 shows the same general behaviour for bulk and
for monovacancy lifetimes. As electrons fill the d shell between 71Lu and 80Hg, the bulk and
monovacancy lifetimes show the same parabolic behaviour. As d electrons start filling the shell,
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the lifetime reduces considerably, and, after reaching a minimum near the half-filled shell (d6),
it increases again. This trend is explained simply with the behaviour of the atomic volume (see
figure 1). This general dependence of positron lifetime with the outermost d electrons in bulk
and monovacancies is independent of the row of the periodic table. The 4th row, from 21Sc to
30Zn elements, and the 5th row, from 39Y to 48Cd elements, show the same behaviour.

On the other hand, in lanthanides (from 57La to 70Yb) the positron lifetime remains nearly
constant as the 4f shell fills up (τbulk ≈ 200 ps and τvacancy ≈ 315 ps). The increasing
number of f inner electrons is responsible for the magnetic properties of lanthanides, and the
outermost s–d electrons determine the bonding and other electronic properties [73–75]. So,
the f inner electrons cannot cause appreciable changes in positron lifetimes, since the positron
wavefunction is mainly located in the interstitial space. However, the lifetimes of 63Eu and
70Yb are larger than the other lanthanides, because they have a half-filled (63Eu) or completely
filled 4f shell (70Yb). For this reason, Eu and Yb get a more closed electronic structure and
show a particular behaviour in several properties (atomic volume, electronegativity, melting
point, ionization potentials etc). It has to be remarked that in the case of actinides (from 90Th to
97Bk), the positron lifetime does not remain constant (see table 4). Indeed, it follows a parabolic
behaviour (see figure 1) similar to the one found in d shells. This behaviour is in agreement
with previous statements [76–78], which indicate that, in contrast to 4f electrons, 5f electrons
are relatively delocalized and can contribute to the bonding. This special electronic structure
makes positron lifetime (and other physical properties) behaviour more complex.

However, there are some especial features superimposed on to these general trends. In
bulk, for the first lanthanide elements (from 57La to 62Sm) GGA lifetimes are similar to BN
ones. But, between 64Gd and 69Tm, GGA lifetime is a little bit larger than the BN one,
about 4 ps (see table 4). There are only three experimental bulk lifetimes from the literature.
These experimental lifetimes are from different research groups and not from very recent
measurements. So, it would be interesting to get new experimental data for the lanthanides.

In monovacancies, the lifetimes of lanthanides have a particular behaviour (see figure 2).
For most of the elements of the periodic table, GGA lifetimes are usually larger than BN ones
(see table 6). Opposite to this general trend, the GGA lifetimes of lanthanides are shorter
than BN ones, by about 3–5 ps (see table 6). As is known, the positron is very localized in
a monovacancy and the probability of annihilation with inner electrons is much lower than in
bulk. Taking into account that f electrons are inner electrons, they do not have an appreciable
effect on these lifetimes. So, the values of these lifetimes are due to the external electronic
configuration, similar to the outer electronic configuration of 57La. As in the bulk case, 63Eu
and 70Yb are outside this trend, showing a special feature. It could be expected that they
would follow the same trend as the other lanthanides. However, they show the opposite—GGA
lifetimes are longer than BN ones.

A lot of work has been done to try and understand the behaviour of d electrons [34, 79].
In the bulk case (see figure 2), for La, Ce and Lu the BN lifetimes are longer than the GGA
ones. However, as electrons start to fill the d shell, the difference gets smaller. And from d3

(73Ta) to d10 (80Hg) the GGA lifetime is longer than the BN one, increasing the difference
as d orbitals are being occupied. The GGA correction to the local density approximation
is roughly proportional to the number of outermost d-electrons in the atom [34]. The four
experimental lifetimes found in the literature fit very well GGA values in this region. Local
density approximation calculations made with different parametrizations, BN (table 3) and
LDA (table 7), show that the positron lifetimes for bulk transition metals are systematically too
short in comparison with the experimental values, and GGA fits the experimental values better.

In monovacancies the trend is similar to that of the bulk. The BN lifetime is longer than
the GGA one for the first elements, from Lu(d1) to Ta(d3). At W(d4) and Re(d5) BN and GGA
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lifetimes are the same. And finally, from Os(d6) to Hg(d10) GGA lifetimes are longer than
BN ones. So, the trend is the same, but in monovacancies more d electrons are needed for
GGA lifetimes to get longer than BN ones. In monovacancies, the calculated lifetimes and the
experimental ones show a larger difference than in the bulk case.

In lifetimes calculated within the AT-SUP method, BN and GGA values follow the very
same general trends. However, the differences between GGA and BN lifetimes are much
greater, due to the lack of self-consistency of the electronic densities used in calculations.

4. Conclusions

The systematic calculations performed in this work set a theoretical support for understanding
and interpreting different positron lifetime experiments. It has to be remarked that there are
many elements among these lifetimes calculated for the first time.

As a result of these positron lifetime calculations, a well-known trend for the bulk lifetimes
has been systematically proved again, and the same trend has been established for the calculated
monovacancy lifetimes too. However, a direct quantitative extrapolation on the absolute values
cannot be done for the whole periodic table due to the fact that positron lifetimes reach
saturation at 500 ps. This fact deforms the trends compared to the atomic volume. So, it is
concluded that the positron lifetime of the bulk and vacancies is a periodic property of the
elements.
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[43] Puska M J, Mäkinen S, Manninen M and Nieminen R M 1989 Phys. Rev. B 39 7666
[44] Landolt H and Börstein R 1985 Numerical Data and Functional Relationships in Science and Technology (Berlin:

Springer)
[45] Campillo Robles J M and Plazaola F 2003 Deffect Diffus. Forum 213–215 141
[46] Shearer J W and Deutsch M 1949 Phys. Rev. 76 462
[47] Deutsch M 1951 Phys. Rev. 82 455
[48] Deutsch M 1951 Phys. Rev. 83 207
[49] Deutsch M 1951 Phys. Rev. 83 866
[50] Kirkegaard P and Eldrup M 1972 Comput. Phys. Commun. 3 240
[51] Kirkegaard P and Eldrup M 1974 Comput. Phys. Commun. 7 401
[52] Weisberg H and Berko S 1967 Phys. Rev. 154 249
[53] Liu D C and Roberts W K 1963 Phys. Rev. 132 1633
[54] Singman C N 1984 J. Chem. Educ. 61 137
[55] Pettifor D 1995 Bonding and Structure of Molecules and Solids (Oxford: Oxford University Press)
[56] Greenwood N N and Earnshaw A 1984 Chemestry of the Elements (Oxford: Pergamon)
[57] Porterfield W W 1993 Inorganic Chemistry. A Unified Approach (New York: Academic)
[58] Shriver D F, Atkins P W and Langford C H 1990 Inorganic Chemestry (Oxford: Oxford University Press)
[59] Rich R L 1972 Periodic Correlations (Reading, MA: Addison-Wesley)
[60] Meyer J L 1870 Justus Liebigs Ann. Chem. 7 (Suppl.) 354
[61] Rubaszek A, Szotek Z and Temmerman W M 1998 Phys. Rev. B 58 11285
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